COP 2210

Laboratory 13: ArrayList Processing
Partner 1 Name and Section:
__

Partner 2 Name and Section:
__

Objectives:

1. To learn how to use a search method to locate a specific object in an ArrayList
2. To learn how to insert a String in its proper place in an ordered list (i.e. to use the compareTo method to compare Strings)

3. To practice using the two-argument add method and the remove method of the ArrayList class
Begin by copying these files from the class web page into your src folder:

NameListTester.java

SearchTester.java

sorted.txt
Exercise 1:
NameListTester.java
Open NameListTester.java and study the NameList class for a moment to familiarize yourself with the available methods. Now compile and run the program.
The program reads a sorted list of names from a data file, stores them in a NameList, and prints the list. It then prompts the user to enter a name to be removed from the list, searches the list to locate the name, and removes the name from the list. Then, it displays the modified list.
However, the current version of the program does not work. One reason is that class NameList has only a "stub" for the search method.

1. Copy the search method from SearchTester.java and paste it in place of the method stub.

2. Modify the search method as necessary so that it searches for a String instead of for an int.

· Remember that to test Strings for equality, we cannot use the “==” operator (that will only tell us whether two object variables are both pointing to the same object). Instead, we call the equals method:

if (s1.equals(s2))
Assuming s1 and s2 are String object variables, method equals will return true if the two Strings they are pointing to are equal, and false if they are not.
3. Finally, add statements in the indicated place in main to call your search method and delete the name if it was found in the list. Otherwise, print an appropriate message. (If necessary, consult SearchTester.java to review how to call a search method)
Check _____
Exercise 2:

Note that the program also prompts the user for names to be added to the list. However, this feature is not yet implemented because class NameList has only a stub for the insert method.
Complete the insert method by implementing the algorithm below, which inserts a String in its proper place in a list that is sorted in ascending order. But first, let’s review how Strings are compared:
Note that we cannot use relational operators <, <=, >, and >= with Strings (or other objects). Instead, we use the compareTo method:

a.
if (s1.compareTo(s2) < 0)

This test returns true if the String pointed to by s1 is “less than” the one pointed to by s2, and returns false otherwise.

b.
if (s1.compareTo(s2) > 0)

Returns true if the String pointed to by s1 is “greater than” the one pointed to by s2, and returns false otherwise.

For Strings, “is less than” means that a given String would be found before another in a dictionary where the strings are ordered according to the Unicode values of their respective characters (see the document “String Comparisons”).

Algorithm to Insert a String in its Proper Place in a Sorted List

1. First, check to see if the name to be inserted is greater than the last name on the list. If so, append it to the end of the list and we are done; otherwise do steps 2 and 3, below

2. Traverse the list and examine each element in turn (beginning with the first) until you find the first name that is greater than the one to be inserted.

3. Use the two-argument add method of the ArrayList class to insert the new name at the index of the name found in step 2:

 list.add(i, object) ;

inserts object into list at index i. The size of the list increases by 1.

Test your implementation with 3 different insertions:
Java, Zarf, and Aardvark

Check: _____

